Clusters With Core-Tail Hierarchical Structure And Their Applications To Machine Learning Classification

نویسندگان

  • Dmitriy Fradkin
  • Ilya B. Muchnik
چکیده

We present a method for analysis of clustering results. This method represents every cluster as a stratified hierarchy of its subsets of objects (strata) ordered along a scale of their internal similarities. The “layered structures” can be described as a tool for interpretation of individual clusters rather than for describing the model of the entire data. It can be used not only for comparisons of different clusters, but also for improving existing methods to get “good” clusters. We show that this approach can also be used for improving supervised machine learning methods, particularly “active machine learning” methods, by specific analysis and pre-processing of a training data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovering and Analyzing the Intellectual Structure and Its Evolution in Core Journals of "Knowledge and Information Science" during 2004-2013

Purpose: This study aims to reveal the intellectual structure of Knowledge and Information Science and its evolution along with the review of journals subjective scope based on 6830 abstract in the ten core journal in the JCR 2013, over the ten years (2004-2013). Methodology: In this research, co-word and Correspondence analysis of 150 words -selected by tf-idf weight- were done after parametri...

متن کامل

Classification of encrypted traffic for applications based on statistical features

Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...

متن کامل

Trust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic

Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004